
ON PERIODIC MOTIONS OF A CLASS OF 
AUTONOMOUS SYSTEMS 

(0 PERIODICHESKIKH DVIZHENIIAKH AVTONOMNYKH 

SISTEM ODNOQO KLASSA) 

PMM Vo1.27, iio.6, 1963, pp.i124-1127 

T. F. IVANOV 
(Our’ ev) 

(Received May 4, 1963) 

In [1,21 a method is given for finding the periodic motions of nonlinear 
systems described by equations (1.1) of a particular form. This method 
is used in the present paper to prove a theorem on the existence of 

periodic solutions of equations (1.1) under more general conditions than 
in Dragilev’s theorem [31 on the existence of at least one limit cycle. 

The theorems proved earlier made it possible to justify the formulation 
and solution of intermediate and mixed problems for the study of non- 

linear systems described by equations of the form (l.l), and to prove 

that the results obtained may also be used to solve the direct problem; 

that is, to find all the periodic solutions of equation (1. l), at least 

under the condition that the functions p(x) and q(x) are continuous. 

1. A prominent class among autonomous systems with one degree of 

freedom is the class of systems described by equations of the form 

T" f p (s) 5’ _I- xq (x) =- 0 (1.1) 

Here p(x) and q(z) are real functions of X. We introduce the func- 

tions a(x) and ‘t’(x), related to p(x) and q(x) by the system of equations 

Theorem I .f. Let one of the particular solutions of system of equa- 

tions (1.2) be expressible by two real functions 0 = T(X) and ‘? = V(X), 

which in some interval [a < x < bl, a f b, satisfy the conditions 

cp -= 0, dq / dx+O if x=al,b (1.3) 
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cp i8 Continuou6 in [a, bl; 0 < q~ in (a, b) 

~/cpl$l<l in [a,bl (1.4) 

Then to the above two functions q(x) and y(x) there corresponds a 
particular periodic solution x(t + to) of equation (1.1) with ertremum 
values at x = a, x = b a finite non-zero period 

b 

T=2 (1.5) 

Proof. Equation (1.1) has a first integral 

where 0 and ‘t’ are the general solution of system of equations (1.2). 
Indeed, if ~0 differentiate (1.6) with respect to the independent vari- 
able t, after the proper transformation, we obtain equation (1.1). 

According to (1.6). at least under the condition that the two func- 
tions q~ and I+I defined by (1.2), satisfy conditions (1.3) and (1.4), in 
the interval [a, bl the phase trajectory of the corresponding solution 
x(t + to) of equation (1.1) describes in the X-Z phase plane a closed 
curve which does not Intersect Itself, is nowhere tangent to the x-axis, 
and Intersects it only at the two end points a and b, so that the solu- 
tion x(t t to) is a periodic function with the ertremum values a and b 
and with a bounded nom-zero period T. Indeed, from (1.6) we have 

b r>a 

t+ to= if d”<<o 
dt 

The period of oscillation is found from the equation 

b b b 

T= 

The theorem is proved. It should be noted that there are infinitely 
many real functions*p(x) and p(x) such that the conditions of Theorem 
1.1 are satisfied but the conditions of Dragllev’s theorem [31 are not. 

Example. Let U(X) and U(X) be integral polynomials in x which in some 
interval [a, bl satisfy the conditions 
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ua < I, eava (1 + 9) [Aa - (X - ~)a]~-~-*~ < 1 (1.8) 

where E, y and A are positive constants 

s > 0, 0 < -f < 0.5, 0 < J. < ‘ia (1 - T) (1.9) 

44 = ‘/a (b - cl), c=‘/,(b- a), Aa - (z .- c)a = (b - I) (x - a) 

The set of function,s p(x) and q(x) is determined from the equations 

p (5) = ea (1 -1 u) ((3 - 3~ - 2h) (1 + u) (x - c) v - 1324’~ - 21’ (1 + u)] (b - 2) x 

X(x - a)} [Aa - (I - p1-‘-” 

rq (5) = ea [(cc - c) (1 - r) (1 + u) - u’ (b - 2~) (z - a)] (1 - Cava (1 $ u)~ X 

x [AZ - tz - qqL-y-*~~ [AS - tz - c)]-y (1 .lO) 

Here the prime denotes differentiation with respect to X. 

For y > 0 the conditions of Dragilev’s theorem are not satisfied at 
the end points of the interval [a, bl , but equations of form (1.1) have 
periodic solutions with the extremum values x = a, b and finite periods, 
since if we use (1. lo), the particular solutions 

@ = ea (1 -I- 

found from (1.2) 
tions of Theorem 

The equations 
the form 

u)a Ina - (I - c)211-Y, y = t’ [A2 - (3: - c)2l-a (1.11) 

will, according to (1.8) and (1.9), satisfy the condi- 
1.1 in the interval [a, bl . 

of the phase trajectories of such solutions will have 

2’ z + e (I +u) {I -+ e2, (I -1. u) [.42 _ (2 _ c)~]‘/Z’~-~-*~)) [iI2 - (z - (-)2]“z(1-y) 
(1.12) 

in the XX’ phase plane. 

The periods of oscillation may be found to any desired accuracy from 
the equations 

( 1.13) 

since, according to (1.9), the functions g(x - C) can be expanded into 
absolutely and uniformly convergent power series in (x - c). Here 

g (.L. - c) = -- 
[A2 - (x - qp y 

(I -tU) (I - ~~2 (I + 42 [,I2 - (x + C)aj1-.‘-2’.j 

As the existence criterion for at least one periodic solution of 
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equation (1.1) with specified p(x) and q(x), Dragilev’s theorem cannot 

be compared with Theorem 1.1, since it is much easier to check that the 
conditions of Dragilev’s theorem are satisfied than to check that the 

conditions of Theorem 1.1 are satisfied. 

However, in the study of autonomous nonlinear systems described by 

equations of the form (1. l), Theorem 1.1 makes it possible under even 

more general conditions to prove the solution of the intermediate prob- 

lem, when the equation of a phase trajectory of form (1.6) is given; and, 

from it, using the system of equations (1.2). one must find the functions 

p(x) and xq(x) and equation (1.1). In this case, if conditions (1.3) and 
(1.4) are satisfied, one particular periodic solution of the resulting 

equation of form (1.1) obviously is easy to find from equations (1.5) 

and (1.7). It should be noted that, in addition to this particular 

periodic solution, equation (1.1) may also have other periodic solutions 

which must be found by using the solution of the direct problem. 

2. In real self-oscillatory systems described by the equations of 

form (1. l), the functions p(x) and q(x) usually satisfy the conditions 

p(x) t xd4 cant inuons, q(n) > @, p(x) # 0 (2.1) 

Hereafter, we shall assume that these ooadftions are satisfied. In 

order to study such systems we shall Introduce the auxiliary functions 

F(X) and H(X), related to the first derivatives X’ by the equalities 

I/F(z) = X’ if x.> 0, JGGi=- I’ if zgo (2.2) 

Hence we have 

I.. = dFJdx if x.>o, 2” = dHJdx if se<0 (2.3) 

Using (2.2) and (2.3). instead of equation (1. 1), we obtain two equa- 

t ions 

dF/dr = - 2x4 (x) - 2 1/F (x) p (x), dH/dx = 2xq (x) + 2 v/H(x) p (z) (2.4) 

All the real solutions of equations (2.4) are positive; according to 

(2.1). the right-hand sides of these equations are continuous and, for 

F(x) and H(Z) > 0, satisfy a Lipschitz condition. Therefore, in accord- 

ance with (2.2) and (2.3). when (2.1) is satisfied, to each periodic 

solution x(t + to) with extremum values x = O, b there corresponds a 

pair of functions f(x) and h(x), found from (2.4), and these functions 

satisfy the conditions 
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f (4, h (4, df /dx, dh / dx oontinuous in [a, 61 

f (GO, h (~1 >O in (a, b) 
f (r)=O, h (8) = 0, dfldx#O, dhldx # 0 for x = a, b (2.5) 

Aooording to (1.5) and (2.2), the funotions Q(x) and ‘t’(x) are found 
from (1.2) 08 followa: 

From thir and from (2.5) it la readily aeon that the following 
throremr are true. 

Throrrn 2.1. If (2.1) ir rotisfied, to every periodic solution 

x(t + to) of equation (l.,l) with ertremum values x = a, b there oorre- 
spondr a pair of funotionr q(x) and .p(x), found from (1.2), and these 
function0 are oontlnuoun In [a, bl. have oontinuous first deriratlver 
with reapeot to x, and satirfy condition (1.3) and (1.4). 

Theorem 2.2. To any pair of continuous functions T(X) andy(x), found 
from (1.2), which have continuous first derivatives and satiafg oondi- 
tions (1.9) and (1.4) in some interval [a, bl, there corresponds a oon- 
tinuoue periodic rolution of equation (1.1) with continuous firrt and 
reoond derivative6 with respect to t and extremum values x = a, b. 

Aooording to Theorem 2.2, If (2.1) ie ratisfied, the functions 9 and 
y of (1.2) and their firlrt derivatives with respect to x, corresponding 
to the period10 solutions of equation (1.1). may be uniformly approxi- 
mated by integral polynomials p’(x) and y’(z) in x 

9 (x) = cp” (xl, q (x) =$” (xl 

It can be rhown [I] that according to (1.3) and (1.4)) the poly- 

nomials 9’ and p neoersarily ratisfy equations of form (1.11) in which 
the oonrtanta y and A are raual to zero, and the polynomial6 u(x) and 

U(X), if a in ohorren large enough, aatirfy condition6 (1.9) in the 
interval [a, bl, Equationr (1.10) beoome 

p (x) = d (1 + L) (3 (x - c) (1 + u) v - [3uu’ - u’ (1 + 41 (b - 4 (2 - 0)) 

x9 (x) =e~[(~-c)(1~u)-~‘(b-~)(x-a)]{1-e~v~(1~v)*[A*-((z-cc)~l~ 
(2.7) 

The equations of the phase trajeotorlee of the periodic solutione 
oan be reduoed to the form 

x’ = * e (1 +u) (1 f ev (1 + u) [AS - (r - c)S]‘/~} [As - (x - c)~]-“~ (2.8) 
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The periods of oscillation are 
where the functions g(z - C) are 

g(z - c) = (1 + $1 (1 - 

I vanov 

found from an equation of form (1.13), 

E2V2 (i $ IL)’ [A2 - (X - C)a]:-l 

In Section 1 above we justified the intermediate formulation of the 
problem for the general case, when the functions p(x) and xq(x) may be 
discontinuous. 

Evidently, when the intermediate problem is stated and the functions 
P(X) and xq(x) are required to be continuous, it is desirable to express 
the functions a(x) and y(x) in form (1. ll), with y = A = 0. In this case 
it is a relatively simple matter both to find the functions p(x) and q(x) 

from equations of form (1.2) and to find a periodic solution for a given 
closed-cycle equation. 

The intermediate formulation of such a problem may be used, for ex- 
ample, in the design of single-loop generators for electromagnetic 
oscillations, from the quasilinear to the relaxation type, if these 
systems are described by equations reducible to the form (l.l), in which 
the functions p(x) and xq(x), in the great majority of cases, satisfy 
conditions (2.1). 

In certain cases in the investigation of systems described by equa- 
tions of form (1. l), it is desirable to formulate and solve the mixed 
problem when the functions p(x) and the functions a(x) from (1.2) are 
given. A special case of such a problem is considered in [21. 

In the mixed problem, after solving system (1.2) for y(x), we find 

‘$’ = @-% \ p (x) v& dx, 
. 

2kq (xl + {I-[$ (xl vsds]a} W = 0 (2.9) 

From the second equation we can readily find xq(x). 

Example. Let 

p(r) = a (1 - G), 

(12 = (l-q)-*, 

The equation for a closed cycle is of the form 

@ = aa (,42 - x2) 

A2 = 4 1+a;6+&+. . .)=4(1 +a;) 
(2.1Oj 

( 

Solving an equation of the form (2.9)) we find 
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where D(x) is an even analytic function of x, and 
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D (0) = 0, ID (2) 1 <0.02 a4 for a < 1 

By analogy with the example given in [21, it may be shown that, at 
least for a < 0.5, an equation of the form 

Z” +a2 [I - D (I)] z = a (1 - 3) cc’ 

obtained from (2.10). describes, for example, an automatic generator 
with transformer feedback for soft excitation, with an error of the same 
order as the Van der Pol equation. 

In conclusion, we note that system of equations (1.2) or equation 
(2.9) may be used to find all the functions p(x) and y(x); that is, to 
solve the direct problem, at least in the cases where the given func- 
tions p(x) and xq(x) satisfy conditions (2.1). In this case, according 
to Theorem 2.1. it can be stated that no periodic solution of equation 
(1.1) will be lost. 
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